In order for PSFA personnel to administer emergency oxygen using a nasal cannula, non-rebreather face mask, or BVM, or utilize NPAs/OPAs, they must:

- Be part of the organized EMS system, functioning under the oversight of an S-SV EMS approved BLS optional skills provider
- Be authorized by the approved BLS optional skills provider to utilize these optional skills
- Have received adequate training on utilization of these optional skills
Purpose

- To enable authorized PSFA personnel to administer emergency oxygen using a nasal cannula, non-rebreather face mask, or BVM, and utilize NPAs/OPAs

Objectives – describe/demonstrate the following

- Indications, contraindications and administration of emergency oxygen using oxygen delivery devices
- Indications, contraindications and insertion of NPAs
- Indications, contraindication and insertion of OPAs
Emergency Oxygen Administration
• **Key concepts**

 o Every cell in the body needs oxygen (O₂) to live

 o In a medical emergency, the body may inspire (inhale) or deliver lower levels of oxygen

 o Hypoxia (inadequate O₂) leads to organ and brain damage

 o Providing supplemental oxygen during an emergency may prevent/delay damage to vital organs
• **Key concepts (cont.)**

 o **The air we breath contains:**
 - 21% oxygen
 - 78% nitrogen
 - 1% other elements

 o **The body only uses about 5% of inhaled oxygen**
 - Our exhaled air contains **16% oxygen**, enough to keep someone alive with rescue breaths for a short time
• **Key concepts (cont.)**

 o **Oxygen perfusion** is when cells receive oxygen-rich blood.

 o Depending on the type of emergency, the victim may be able to breathe but can’t perfuse oxygen.

 o **Emergency oxygen** is a higher concentration of oxygen than the air we breathe.

 o **Emergency oxygen** can increase oxygen concentrations in the lungs, which may allow more oxygen to be absorbed (perfused) into the bloodstream.
• Key concepts (cont.)
 o Respiration
 ▪ Exchange of carbon dioxide (CO$_2$), the waste product from breathing, with fresh air from the atmosphere
 o Ventilation
 ▪ Moving air in and out of the lungs for respirations
Key concepts (cont.)

Anatomy
- Larynx
- Trachea
- Right Lung
- Left Lung
- Alveoli
- Capillary beds
- Diaphragm
• Key concepts (cont.)
 o Alveoli
 ▪ Small air sacs in the lower lobes of the lungs where the exchange of O_2 and CO_2 is accomplished through fenestrations (tine holes) along the alveoli and capillary beds
Key concepts (cont.)

- Deoxygenated blood
 - Pumped from right ventricle of heart to lungs, down into alveoli
 - O_2 & CO_2 is exchanged

- Newly-oxygenated blood
 - Pumped back to left side of heart then out to the rest of the body
Emergency Oxygen Administration

- Oxygen information
 - Compressed gas
 - Classified as a drug – regulated by the FDA
 - 100% pure oxygen stored in a cylinder
 - Also known as a ‘tank’ or ‘bottle’
 - Labeled “For emergency use only”
 - Made of metal, aluminum or composite
 - Highly pressurized
Emergency Oxygen Administration

• Oxygen information (cont.)
 o Each cylinder is filled to approx. 2000 psi
 o D, jumbo D and E cylinders are small/portable – utilized on scene
 o Cylinder capacities:
 ▪ D cylinder: 425 liters of O_2
 ▪ Jumbo D cylinder: 640 liters of O_2
 ▪ E cylinder: 680 liters of O_2
Oxygen information (cont.)

- **Pressure regulator**
 - Connects cylinder valve to \(\text{O}_2 \) tubing
 - Controls rate of \(\text{O}_2 \) flow (liters-per-minute or ‘LPM’)
 - Gauge displays amount of pressure per square inch (psi)
 - 2000 psi = full
 - 1000 psi = half full
 - 500 psi = time to refill

Oxygen Wrench
Opens cylinder valve to begin \(\text{O}_2 \) flow into regulator
Emergency Oxygen Administration

- Oxygen information (cont.)
 - O-ring gasket
 - Creates tight seal between cylinder valve and regulator
 - Normally replaced with each cylinder change
 - Oxygen tubing
 - Connects regulator to O_2 delivery device
 - Normally pre-connected to O_2 delivery devices
• Oxygen information (cont.)

 o Connecting the pressure regulator
 ✓ Inspect regulator, attach new o-ring
 ✓ Line up pins on regulator with holes on cylinder valve
 ✓ Twist thumbscrew hand tight
 ✓ Open cylinder valve with toggle or O_2 wrench and read gauge to determine contents
 ✓ Listen for airtight seal
Emergency Oxygen Administration

• Oxygen safety
 o 100% oxygen is very reactive and can cause other materials to catch fire
 o Keep away from heat sources and flammable items
 o Never combine with an ignition source (cigarette, etc.)
 o Avoid alcohol, aerosol sprays, solvents, perfumes and petroleum products (oil, grease, etc.)
• Oxygen safety (cont.)

 o If using oxygen with an AED:
 ▪ Ensure good chest-to-pad contact
 ▪ Move oxygen delivery device at least 3 feet from victim before delivering shock
 ▪ Only deliver shock when rescuers and oxygen delivery device are clear
Emergency Oxygen Administration

- Oxygen safety (cont.)
 - Oxygen equipment storage, handling and maintenance
 - Store cylinders in a well ventilated area, away from heat sources
 - Do not subject cylinders to temperatures greater than 125°F
 - Store spare cylinders upright and properly secured to prevent falling
 - Avoid storing different types of compressed gasses in the same area
Emergency Oxygen Administration

- Oxygen safety (cont.)
 - Oxygen equipment storage, handling and maintenance
 - Regularly inspect oxygen equipment and keep clean – dirt/debris can be a fire hazard
 - Do not use a cylinder or regulator that appears damaged
 - Use regulator to check cylinder contents – do not rely solely on a tagging system
 - Do not slide, drag or roll cylinders
 - When on scene, lay the oxygen cylinder on the floor so it does not accidently get knocked over
Emergency Oxygen Administration

• Why use emergency oxygen
 o Primary use:
 ▪ Correct mild – moderate hypoxia (inadequate oxygen to organs and tissues)
 ▪ Reduce the work of the heart
 o Use to treat breathing difficulty based on:
 ▪ Patient’s condition
 ▪ Patient’s respiratory rate and effort
• When to use emergency oxygen
 o Respiratory rates that are too slow or too fast
 ▪ Adult: < 12 or > 20/minute
 ▪ Child: < 15 or > 30/minute
 ▪ Infant: < 25 or > 50/minute
 o Not breathing
 o Cyanosis
 o Suspected heart attack/stroke
 o Difficulty breathing/respiratory distress from other causes
 o Shock or significant trauma
Emergency Oxygen Administration

- When to use emergency oxygen (cont.)
 - Assess effort of breathing
 - Labored breathing
 - Using accessory muscles in neck and back
 - Speaking in broken sentences
 - Noisy breathing
 - Coughing
 - Wheezing/stridor
 - Tripod position
 - Cyanosis
• Oxygen delivery devices

 o Four basic types

 ▪ Patients breathing on their own
 - Nasal cannula (NC)
 - Non-rebreather mask (NRM)
 - Blow-by

 ▪ Patients who need assisted ventilation
 - Bag-valve-mask (BVM)

 o Different sizes are available for infant, child and adult patients
Oxygen delivery devices (cont.)

- Nasal cannula
 - Consists of a loop of oxygen tubing, two prongs for the nostrils and an adjusting band
 - Low-flow O_2 delivery device
 - Use 2 – 6 LPM
 - Delivers O_2 concentrations of 24% – 44%
Emergency Oxygen Administration

- Oxygen delivery devices (cont.)
 - Using a nasal cannula
 - Connect tubing to regulator and set flow rate at 2 – 6 LPM
 - Open cannula loop
 - Holding loop with thumb and forefinger, insert prongs into nostrils
 - Wrap sides of tubing around patient’s ears
 - Slide adjusting band up
 - Instruct patient to breath in through their nose
Emergency Oxygen Administration

- Oxygen delivery devices (cont.)
 - Non-Rebreather Mask
 - Consists of a mask, O₂ reservoir and tubing
 - High-flow O₂ delivery device
 - Use 15 LPM
 - Delivers O₂ concentrations up to 90%
Emergency Oxygen Administration

- **Oxygen delivery devices (cont.)**
 - Using a non-rebreather mask
 - Connect tubing to regulator and set flow rate at 15 LPM
 - Listen for flow of O_2
 - Briefly cover one-way valve inside mask to speed up filling reservoir bag
 - Place over patients mouth and nose and adjust elastic straps as necessary to hold securely in place
 - Ensure flow rate is at least 15 LPM, O_2 is flowing and the reservoir is inflated
Oxygen delivery devices (cont.)

- Tolerating a non-rebreather mask
 - The mask will completely cover the mouth and nose which can make it intolerable for some patients.
 - Patient may complain that flow of O₂ is restricted, even though they are getting high flow O₂ concentration.
 - Patient may have to be coached to help get used to the mask and be reassured that they are getting more oxygen than normal.
• Oxygen delivery devices (cont.)
 o Blow-by oxygen delivery
 ▪ For infants and small children who cannot tolerate a cannula or mask
 ▪ Use an oxygen mask and a high flow rate (at least 15 LPM)
 ▪ Allows supplemental oxygen to pass over patient’s mouth and nose to be inhaled
 ▪ Keep mask about 2 inches from patient’s face and allow parent to hold if necessary
Oxygen delivery devices (cont.)

- Bag-valve-mask (BVM)
 - Used for rescue breathing/CPR – uses positive pressure to push air into the lungs with each squeeze of the bag
 - Requires additional training to be used effectively
 - Delivers O_2 concentrations of 90% – 100%
Oxygen delivery devices (cont.)

- Using a BVM
 - May be used with or without O_2
 - Risks related to over-exposure to oxygen are low; it is reasonable to use high flow O_2 during resuscitation
 - Never delay resuscitation efforts/chest compressions in order to use emergency O_2
 - The use of emergency O_2 does not change how rescue breaths are delivered with a BVM
Oxygen delivery devices (cont.)

- Using a BVM with O_2
 - Assemble correct size mask, bag and tubing
 - Connect tubing to regulator and set flow rate at 15 LPM
 - Apply mask over mouth and nose – ensuring a good seal between face and mask
 - Squeeze bag to provide rescue breaths at appropriate rate – ensuring chest rise
 - Note: O_2 reservoir bag does not need to inflate
Emergency Oxygen Administration

- Potential risks associated with oxygen administration
 - Oxygen Toxicity
 - Retinopathy of Prematurity
 - Denitrogenation
 - COPD and the Hypoxic Drive
Oxygen Toxicity

- Occurs when there is too much oxygen in the blood
- Caused by prolonged exposure to high concentrations of oxygen – usually after 24 hours or more
- Not usually associated with the use of emergency oxygen in the prehospital setting
- Signs/symptoms: visual changes, ringing in ears, twitching, irritability, dizziness, seizure
• Retinopathy of Prematurity
 o Only occurs in premature infants
 o The retinas are immature before 34 weeks gestation, and can be damaged by high concentrations of oxygen
 o Not usually associated with the use of emergency oxygen in the prehospital setting
• Denitrogenation
 o Also known as absorption atelectasis
 o Occurs when naturally occurring nitrogen in the lungs is replaced with oxygen from over-saturation
 o Oxygen shares alveolar space with nitrogen – if nitrogen is ‘washed out’ by too much O2, the alveoli collapse
 o Can severely impair lung function (process known as atelectasis)
 o Not usually associated with the use of emergency oxygen in the prehospital setting
COPD and Hypoxic Drive

- ‘Hypoxic drive’ is a condition associated with COPD
 - Normally, the body is stimulated to breathe when too much carbon dioxide is detected
 - COPD patients are stimulated to breathe by lower O_2 levels and to not breathe with higher O_2 levels
 - Concern that emergency oxygen can eliminate the hypoxic drive of a COPD patient, causing them to stop breathing
COPD and Hypoxic Drive (cont.)

- General rule:
 - Always administer emergency O_2 if indicated (even if patient has a history of COPD)
 - Difficulty breathing may be related to a condition other than COPD

- Hypoxic drive is rare – do not withhold emergency oxygen
Nasopharyngeal Airways (NPAs)

- **NPA function**
 - Restores airway patency by separating the tongue from the posterior wall of the pharynx

- **NPA indications**
 - Unresponsive patient with a gag reflex
 - Patient will not tolerate an OPA
 - Patient has clenched teeth
Nasopharyngeal Airways (NPAs)

- **NPA contraindications**
 - Responsive patient
 - Suspected head trauma or mid-face or skull fracture
 - Patient on blood thinners

- **NPA precautions**
 - Incorrect placement can worsen airway obstruction
Nasopharyngeal Airways (NPAs)

- NPA sizing
 - Measure from the patient’s earlobe to the tip of the nose

INCORRECT ✓ CORRECT **INCORRECT**
Nasopharyngeal Airways (NPAs)

- NPA insertion
 - Check the nostril for signs of fracture or obstruction
 - Apply water soluble lubricant to the NPA, taking care not to fill the tip with the lubricant
Nasopharyngeal Airways (NPAs)

- NPA insertion (cont.)
 - Orient the bevel end so that it will pass along the inside of the nasal cavity with minimal effort.
 - Insert the NPA until the flange (large end of the tube) is seated on the patient’s nose.
• NPA insertion (cont.)
 o If you meet resistance, gently rotate the NPA from side to side and continue to insert – If you continue to meet resistance, remove the NPA and try inserting in the other nostril
 o Initiate/resume supplemental oxygen or ventilations with a BVM following NPA insertion
Oropharyngeal Airways (OPAs)

- Types of OPAs (both approved for EMS utilization)
Oropharyngeal Airways (OPAs)

- OPA contraindications
 - Responsive patient or has a gag reflex

- OPA precautions
 - Incorrect placement can worsen airway obstruction
Oropharyngeal Airways (OPAs)

- OPA sizing
 - Measure from the corner of the mouth to angle of the jaw

[Incorrect Images] × INCORRECT × INCORRECT ✓ CORRECT
Oropharyngeal Airways (OPAs)

- **OPA insertion**
 - Using a head-tilt-chin-lift, modified jaw-thrust, or grasping the tongue and jaw by placing your thumb in the patient’s mouth, move the tongue forward.
 - Position the OPA with the tip in the patient’s mouth, and slowly insert the OPA – slight resistance will be felt.
Oropharyngeal Airways (OPAs)

- OPA insertion (cont.)
 - At the point resistance is met, continue insertion while simultaneously rotating the OPA 180°
 - Advance the OPA until the flange is resting on or just above the patient’s teeth
Oropharyngeal Airways (OPAs)

- OPA insertion (cont.)
 - Initiate/resume ventilations with a BVM following OPA insertion
 - If the patient gags or vomits, remove the OPA and clear the airway if needed
 - Thoroughly clean and reinsert the OPA only if the victim is still unconscious and does not have a gag reflex
Questions?